Code: 20ME3401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

KINEMATICS OF MACHINERY (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
		UNIT-I			IVIAIKS		
1	a)	Define Kinematic Chain. Differentiate	L2	CO1	7 M		
		between Machine, Mechanism and					
		Structure.					
	b)	Explain various types of constrained	L2	CO1	7 M		
		motions with a neat sketch.					
		OR					
2	a)	Describe the expression for mobility of	L2	CO1	4 M		
		mechanism in a plane.					
	b)	Explain all the inversions of a double slider	L2	CO1	10 M		
		crank chain with a neat sketch.					
UNIT-II							
3	a)	State and prove Kennedy's theorem.	L2	CO2	4 M		
	b)	Fig. shows a mechanism in which	L3	CO3	10 M		
		OA=QC=100mm, AB=QB=300mm and					
		CD=250mm the crank OA rotates at 150					
		rpm in the clockwise direction. Determine					
		the (i) velocity of slider at D (ii)Angular					

	1						
		velocities of links QB and AB (iii) Rubbing					
		velocity at the pin B which is 40mm					
		diameter.					
		В					
		300 350					
		300					
		\300					
		250 C 230					
		D uuu					
		50 280					
		ning Q					
	1	OR		 _ 			
4	a)	Explain the concept of Coriolis component	L2	CO2	2 M		
		of acceleration.					
	b)	In the mechanism shown in Figure below,	L3	CO2	12 M		
		the dimensions of various links (in mm) are:					
		AB = 30; $BC = 45$; $CD = 40$; $AD = 65$;					
		\angle DAB = 75°; The crank AB rotates at 600					
		rpm counter-clockwise. Draw the velocity					
		and acceleration diagram of the given					
		mechanism and find the velocity and					
		acceleration of the each link. (The					
		dimensions in the figure are in mm).					
		e.					
		/ TB					
		/ _					
		/ ω					
		75					
		777					
	UNIT-III						
5	a)	Explain the working of Scotch Yoke	<u>L2</u>	CO3	7 M		
		Mechanism with a neat sketch. How can it	_ _		, 1,1		
		be used to convert rotary motion into					
		reciprocating motion?					
		recipiocamis monon:					

	b)	Illustrate a Paucellier mechanism. Based on	L3	CO3	7 M	
		mathematical condition examine either it			,	
		traces a straight line path or not.				
OR						
6	a)	Derive an expression for condition for	L3	CO3	7 M	
		perfect steering.				
	b)	A car with a wheel track of 147.2 cm and	L3	CO3	7 M	
		wheel base of 274 cm is fitted with an				
		Ackermann's steering mechanism. The				
		distance between the axis of the pivot pins is				
		122 cm and the tie-rod is 110.6 cm long.				
		The track arm is 15.25 cm long. Find the				
		turning circle radius of the car, so that true				
		rolling motion is there for all the wheels.				
	1	UNIT-IV		T T		
7	a)	What is a cam? Classify various types of	L2	CO4	4 M	
		cams.				
	b)	The follower of a tangent cam is operated	L3	CO4	10 M	
		through a roller of 50 mm diameter and its				
		line of stroke intersects the axis of the cam.				
		Minimum radius of the cam is 40 mm, nose				
		radius is 12 mm, and the lift is 25 mm. If the				
		speed of rotation of the cam is 800 rpm, find				
		the velocity and acceleration of the follower				
		at the instant when the cam is 25° from the				
		full – lift position.				
	1	OR		1 1		
8	<u>a)</u>	Explain about types of followers.	L2	CO4	4 M	
	b)	Use the following data in drawing the	L3	CO4	10 M	
		profile of a cam in which a knife-edged				
		follower is raised with simple harmonic				
		motion and is lowered with uniform				

		acceleration and retardation: Least radius of cam = 60 mm, Lift of follower = 45 mm, Angle of ascent = 60°, Angle of dwell between ascent and descent = 40°, Angle of descent = 75°. If the cam rotates at 180 rpm,						
		determine the maximum velocity and						
		acceleration during ascent and descent.						
	UNIT-V							
9	a)	Derive an expression for constant velocity	L3	CO4	6 M			
		ratio of a given meshed gears.						
	b)	The number of teeth on the gear and the	L3	CO4	8 M			
		pinion of two spur gears in mesh are 30 and						
		18 respectively. Both the gears have a						
		module of 6 mm and a pressure angle of						
		20°. If the pinion rotates at 400 rpm, find the						
		sliding velocity at the moment, the tip of the						
		tooth of pinion has contact with the gear						
		flank. Take addendum equal to one module.						
		Also, find the maximum velocity of sliding.						
10		UK	1.0	004	4 1 1			
10	a)	What is a reverted gear train? Explain any	L2	CO4	4 M			
	1.)	two applications.	1.2	CO4	10 M			
	b)	An epicyclic gear consists of a pinion, a wheel of 40 teeth and an annulus with 84	L3	CO4	10 M			
		teeth concentric with the wheel. The pinion						
		gears with the wheel and annulus. The arm						
		that carries the axis of the pinion rotates at						
		100rpm. If the annulus is fixed, find the						
		speed of the wheel.						